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If the complementary work is regarded as a functional of both the Piola stress tensor 
and the vector of displacements, the meaning of Castigllano’s principle is lost as a vari- 
ational principle, which selects among all statically possible states of stress those which 

satisfy the conditions of continuity. 

In paper [4] the complementary work is treated as a functional of the Piola stress ten- 

sor only and it is established that continuity equations (9) follow from the stationary 

state of complementary work. Nevertheless, the question about the possibility of express- 
ing the gradients of displacements and the specific complementary strain work in terms 

of components of the Piola stress tensor remains open in paper [4]. 

In fact, as was shown above, the gradients of displacements and the specific comple- 
mentary strain work can be represented as a function of the components of the Piola 

stress tensor only. Therefore the principle of Castigliano which was formulated for the 
Piola stress tensor retains its significance also in the nonlinear theory of elasticity. 

The author is grateful to A. I. Lur’e for his attention to this work. 
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As is known, plane contact problems of the theory of elasticity for a half-plane in the 
presence of adhesion or friction in the contact domain have been studied sufficiently 
well. 

Corresponding contact problems for elastic solids different in shape or their mechani- 
cal properties from an isotropic elastic half-plane, have begun to be worked upon com- 
paratively recently. The papers of Popov fl, 21 should here be singled out first, 

A general analysis of the structure of the solutiolr of nonclassical plane contact prob- 

lems in the presence of adhesion or friction in the contact domain is given herein. Pos- 
sible methods of solving them effectively are indicated. 

1. Mathematical formulation. Some auxiliary rasulta. We call 
the following the nonclassical mixed problems: (1) mixed problems of elasticity theory 
for bodies of complex shape (strip, layer, circle, sphere, infinite cylinder, wedge, etc. ), 
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2) dynamical mixed problems of elasticity theory, (3) three-dimensional problems of 
elasticity theory for stamps of complex planform. (4) mixed problems of couple-stress 

elasticity theory, (5) mixed problems of linear viscoelasticity, etc. 
In the majority of cases of practical importance, the listed mixed problems in the 

plane modification can be reduced by operational calculus methods to the solution of 

the following three kinds of integral equations of the first kind : 
a) In the presence of complete adhesion over the contact domain 

> 

(1.1) 

b) In the presence of friction forces in the contact domain 

ji ‘~1 (E) &I ( yj dE - Ifa { ‘~1 (E) &s ( y) d5 = Ml (a9 (I 21 d 1) (1.2) 
-1 

c) In the absence of adhesion and friction in the contact domain 

s 9l(5) L (+j dE = nf1 (a$ (I 2 I B 1) (1.3) 
-1 

Here h E (0, oo), E > 0, k > 0 are nondimensional parameters. The kernels 

K,, (1) (i = 1, 2, 1 = 1, 2) can be represented for all ItI = le - sl h” < oo 
in the form 

KU (0 = - ln ItI + FJ1 (47 Kr2 0) = llzn s gn t + F12 (t) (1.4) 
where the functions FJ, (t) are even, and Flz (t) is odd in t, but they are all, at least, 
continuous, later, additional constraints will be imposed on Fjl (t) . We consider the 
functions f~ (z) to belong to the class H,a (-1, 11, n> 1, 0 <CC < 1 (‘). 

let us represent the functions rpj (z) as 

Cpj (z) = ‘Pj” (x) + 'Pj* Cz) (1.5) 
Here cpj” (2) satisfy the following respective integral equations: 

* ) If f (z) E Hna (-8, B), then its nth derivative satisfies the Halder condition with 
exponent 0 < a g 1 for 2 E [-p,p]. 
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On the basilof& l)-(1.8) we easily arrive at the deduction that the 9i” (c), which 
satisfy (1.6)-(1. 8). are the principal terms of the asymptotics of the functions gjj (t) 
for large values of the parameter ?L 

The corrections Cpj* (%), which vanish for h - 00, should be found from the following 

integral equations : 

Here the plus is for j = 1 and the minus for j = 2 . 

c) ( cpl*(5)[-ln~~~+F11(0)]~~=~~l*(~) (JXJW (4.W 
-1 

The integral equations (1.6)-(1.8) can be represented as 

c’ c 9” (9 -lnIE---z/ __sgn(E ] -5) d~=scf(s)- 

21 

-~*~ln~~F~~(O~]-~Q’ (]x]\<if 

Here, respectively, for the cases 

(‘1.45) 



On plane contact problems of the theory of elasticity 235 

a) (P”(E) = $5’ (f) + i%“(E), f (4 = /I (xl + if2 (x), P” = PC-+- iPzO 

(1.16) 

j.&= &l*+-, P+- 5 cpj”(&g, Q" - J'z"[F,,(O) - FdW 
-1 

b) (p" (5) = '~1" (th f (4 = 11 (4, P” = P,” 

(2.17) 

c) cp” (E) = (PI0 (E), f (r) = fi (2>, P” = PlO, Q” = 0, p = 0 (1.18’) 

Differentiating both sides of (1.15) with respect to Z we have 
I 

c q” (4) df + rc tg np’p” (r) = nf’ (X) 
z1 E--z (I = I d 1) (1.19) 

We have here utilized the relationship 

l/z (sgn t)’ = 6 (CC) (1.20) 

and the known properties of the delta function 8 (z). 

Under the assumptions made on the function fc (2) the solution of the integral equa- 
tion (1.19) can be obtained by solving the appropriate Riemann problem [3]. and it will be 

1 

cp” (z) = SIPO - cos np 
s 

f’ (4) x (4) 4 
E--2 I + +l2npj’(2) (1.21) 

-1 

x (x) = (1 -1 zp+y I - a$“-” (1.22) 

In order for the expression of (p” (X) in the form (1.21) to satisfy the integral equation 

(1.15) also, it is necessary to define the quantity P” appropriately. To do this let us 

apply the following artificial procedure. 
Let us note that the following relationship holds fl]: 

1 

SL -lnIE--“l+ Vsgn(g- xj& ,-!!LD, 
cos ny 

(1.23) 
-1 

y (2) zzz (1 + q-y 1 - #2+p, D, - - [In2 + C +0.5+(l/, -t_ p) f 

+ 0.5$(% - p)l 

Here 9 (5) is the Euler Psi-function, and C the Euler constant. 
Let us multiply both sides of the integral equation (1.15) by Y-l (z) , and let us inte- 

grate with respect to X between the limits -1 and 1. Then trasposing the integrals in 

the left side of the relationship obtained and taking account of (1.23) and 

(1.24) 

we will have 

1 

s dE Jr. 
-=- 

y (El cos np 
-1 

P”~hh+-FI1(0)+ D,]+iQ'=cosnp( w 
-1 

(1.25) 
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For the considered cases we have from (1.25) 

a) P,’ = cos np [In h + PII (0) + DJ1 Re S -$$- 
-1 

(1.26) 

ps” = cos ZJA [In h + Fra (0) + Dp]-l Im { f 
L1 Y(z) 

b) PI" = cosnp[lnh + F,,(O)+ D,]-l { '$!:" 
-1 

(1.27) 

c) PI" = [ln2h I- F,, (O)]$ ;g (1.28) 

In obtaining (1.28) it has been taken into account that 9 (‘/.J = - c - 2 In 2. 

Let us present some other relationships which shall be needed later. 
It has been shown in p] that 

1 
-z- s 1 4mx(E) d4 = zrnX(4 _ pm+1 (4 

E---z a! ZP co2 xp (lzl61) 
-1 

P*(t)= 5 a,(p)&'*, 
ll. 

43 (PL) == 2 
(- w (--l/z - L!Jr (P - l/2),_, 

(n - r)! rl 
(1.29) 

n=o ?=o 

(z), = 2 (2 + I)... (2 + n - I), (z). = 2 

If f (3) E HnlT (- fi, fi), n > 0, 0 < a < 1, then it can be shown that 

(2.30) 

foranyx and EE [-f-l, PI, A = const, > 0. If the function f (z) is even, then 
we obtain by taking 9, is as new variables and utilizing (1.30) 

for any 3 and E E [ - fi, g], B+ = const > 0. Analogously.for odd f (z) we have 

I ~~~~ (E) ~--1])< B- I t - E I”‘” (1.32) 

for any z ~2 l-b, PI and 0 < e f IEl < fl, B_ = const > 0. 
Lemma 1. Let f (z) E: H,a U,), n > 0. 0 <h -< 1 be an L-smooth 

closed contour in the complex z-plane. Then the function 

(1.33) 

also belongs to H,* (L), and p = X if h < 1 and p = 1 - E, where E is an arbit- 
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rarily small positive number if L = 1. 
The lemma follows easily from the results in sections 4.4 and 5.1 of the monograph 

PI. 

2. Invrrtlgrtlon of th8 ntructurc of the solution (1, 6) of the 
integral equations (1.1) - (1.3). Let us first study the structure of the solu- 

tion cp* (2) of the integral equation (1.15). 

Theorem 1. If fez+, (-1, 1), n>O, 0 CaG.Ii, thefunction 
cp” (3 has the form 

0” (4 = o” (x) x-’ (5) (2.1) 

Here o” (x) E rr, ( - 1, 1), where y = a if a < 1, and y = 1 - e if a = 1, 
and e is an arbitrarily small positive number. 

Proof. let us first consider the case of odd f (t). Using (1.29). we represent (1.21) 
for cpO (z) as 

l 
qqx) = % [PO - cosnp s an (5) x (5) @ 

4 --z + Qsn+&)] + &sin 2npDD, (5) 
-1 

n uJ,(x) = f’w- 2 (- ilk (1 -“,2)k [l,“p (gje, 

(2k)!! 1 

k=o 
(2.2) 

Here &,,r (2) is a polynomial of degree 2n f 1. 
It is easy to see that @‘n (x) E H,a ( - 1, 1). Moreover, it follows from (1.31) that 

the function @, (z) behaves as (1 T Z)“‘O in the neighborhood of the points z = +- 1. 

There remains to show that the integral 

l @)n (4) x cc, dE 
J(x) = jl s-2 (1216~) (2.3) 

belongs to H,’ ( - 1, 1) as a function of x . 

Let us consider the auxiliary integral 

J* (z) = i “;‘“;“” (2 EL), 

Here L’ is a segment of the real axis I& [ < 1 in the complex plane, and L” is its 

‘IA 
smooth closure (see Fig. 1). 

Taking account of the properties of F,, (z) it is 
easy to show that a,, l (z) E H,a (L). Then on 

the basis of lemma 1 it can be concluded that 

J* (z) E HnY (L), (2.5) 
t 
W Now noting that J* (z) agrees with the integral 

-I 1 J (x) on the segment L’. we are assured of the 

validity of the theorem for the case ofan odd func- 

Fig. 1 tion f (z). The case of even f (2) is considered 
analogously by relying on the reiationship (1.32). 

Corollary 1. If f (x) E HIa ( - 1, 1), 0 < a q 1, the function $’ (x) EZ 

c L, (- 1, I), 1 c p .< x (2. Here x = 2 - e for cases (a) and (c), and 
x = 2 (1 + 2p)-’ - E f or case (b), (e is an arbitrarily small positive number). 
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Let us now turn to a study of the structure of the functions cpf* (%I. We shall hence 

later consider two fundamental versions : 

Al Fjj(t)=cjjjti+Gjj(t), F,@) I- w In I f 14 G,,(f) (23) 

Gjl (t) E HIV (-2/h, 2/h), 0 <v < 1, Ih, > 0 

W F& (t> E s*, (-2& 2fhh O<Y\<% h>O,k> 0 (2.71 

We moreover assume that the solutions ‘pj* (%) of the integral equations (1.9)-(1.14) 

exist in J& (- 2, 11, 1<4\(x. 
Let us note that the version A is encountered in mixed problems for domains with 

circular boundaries, for instance, in contact problems of elasticity theory for an infinite 

circular tube. 
The version B is encountered in studying mixed problems for strips, wedges, etc. 

Let us first elucidate the properties of functions f~* (5) of the form (1,10),(1.12), 
(1.14) for the versions mentianed, 

Taking account of (2.6). let us rewrite (1.10) as 

(2.8) 

On the basis of the assumption A relative to the properties of the functions rpj* (%) 
and G*, (I$, and also taking account of the properties of the functions 9p~’ (%) , it is not 
at all difficult to show that the third and fourth integrals in (2.8) belong, as functions of 

rt: *to HXV (-1, 1). I n order to investigate the first two integrals in (2,8), let us dif- 

ferentiate them with respect ta 5. We have 
t (2.9) 

Utilizing the HiIIlder inequality and the properties. of the functions (pp (%), v** (%I, 
it can be proved that the first integral in (2.9) belongs, as a function of 5, to HOP (-1, l), 

and the second to g-’ ( - 1, 1). Here 
t_=Inf E$* +\ 

C 
and 8 is an arbitrarily small positive number. Therefore, the first integral in (2.8) 
belongs to Hf~(--lr $1, and the second to ff,-” (- 1,1). 

Hence, for the version -A the functions fj* (CC) E HI” (- 1, 11, where 

s = In f (r - E, Y) for cases (a),(b), and 

S = In f (f* Y) 
for case (c), 

on the basis of the assumptions made and the properties of cp~” (%I , we easily find 
for version B that 



On plane contact problems of the theory of elasticity 239 

for all the cases considered. 
Ii*@) E fJlr+1y- 1, 1) 

The following theorems about cpj* (5) can be formulated. 
Theorem 2. If f (5) E HIa (- 1, I), 0 < cc ,< 1 .and if the assumptions A 

are valid, the function ‘p* (x) has the form 

‘p*(z) = o* (z) X-l(s) (2.10) 

where o* (z) E H,,s ( - 1, 1). 
Theorem 3. If f (z) E HIa (- 1, I), 0 <cc < 1 , and if assumptions B are 

valid, the function ‘p* (z) has the form (2.10). where O* (5) G Ht.+, (- 1, 1) and 

l=vifv<I,andl=1 -eifv = 1, ( e is an arbitrarily small positive num- 

ber) ( l ). 
Here ‘p* (z) = rpl* (z) + icpz* (t) for case (a), and ‘p* (x) = ‘pl* (z) for cases 

(b) and (c), The proof of Theorems 2 and 3 follows easily from Theorem 1 and the above- 

mentioned properties of the functions f,* (z). 

3. On effective arymptotlc mathod, of solving the integral 
0 qua t i on I (1. i) - (1.3). Effective asymptotic methods of solving integral equations 
of the type (1.3) are elucidated in [4]. Some of these methods can be used, without 
essential changes, for the approximate solution of integral equations of types (1. l), (1.2) 
as well. 

Asymptotic solutions of (1.1). (1.2) can be obtained by a method analogous to that 

described in [4], Sect. 2 for the large values of the parameter h . Let us demonstrate this 
by the example of Eqs. (1.2), (1.4). 

Under the assumptions A, the integral equation (1.2) can be represented, on the basis 
of the relationships (1.21). (1.27), as an equivalent integral equation of the second kind 

in L, (-1, 1) for h>O: 

under the additional condition 

p,= { cP1(E)&i= 
-11 

cosnp(lnh + Dp)-l{l,W - 

-+$y~ ~1(5)[Fll(~)-tg.pF,,(~)]d~} (3.2) 

-1 

Now, let us assume that the following expansions 

* ) It can be shown that the results of Theorems 2 and 3 are conserved even if the func- 
tion f’(z) has a singularity of the type (I- z*)-‘, 0 < 0 <Ii2 at the points z = fi . 
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Fjj (t) = 5 (Ujjl, + bjjk 1 t 1 ‘f Cjjk III 1 t I) tzk 
k=o 

(3.3) 

k=O 

which converge uniformly for all ItI <p are effective for the function PI, (t) (*) . 
Then all the results based on (3.3) will be satisfiable for at least all 2, > 2~~‘. 

Let us substitute (3.3) into (3.1). and let us seek its solution as 

VI(~) = 5 5 (pmn (2) h-” In* h (3.4) 
m=o n==o 

Equating coefficients in the right and left sides of (3.1) for identical powers of h-’ 

and In h, we obtain an infinite system of relationships for the sequential determination 
of the functions cp,,, (CC), which we shall not present in the interests of brevity. 

If bjlk = cjlk = 0 (3.5) 

in (3.3), and the function fi (z) is a polynomial, then in determining q,, {z) from 

the above-mentioned relationships all the quadratures are taken in closed form (see f_l]. 
formulas (3. l), (3.3). for example). In the general case, some of the first few functions 

qz~~,,,,, (z) can be determined approximately, just as has been done in [S]. 
After the required number of functions rp,,,, (z) have been found (depending on the 

desired accuracy of the asymptotic solution (3.4)), the quantity P, is determined by for- 

mula (3.2). 
For small values of the parameter h the construction of the asymptotic solution of the 

integral equation (1.2) by the method elucidated in [4], Sect. 4, causes no special dif- 
ficulties. Hence, we elucidate just the scheme for constructing an asymptotic solution 

for small h for the system of integral equations (1.1). 

Let us rewrite the system (1.1) as 

‘p (2) = Qll(4 + %3 14 fqq =&r@) +ieKl,(Q (3.6) 

g (4 = f(4 + $ ml p4 (E) M (V) au -+f (q = Km (t) - &I (t) 

f (4 = A (4 + ifa (4 
Now it is convenient to solve the system (3.6) by successive approximations accord- 

ing to the scheme @, (5) = Q’m (x) + Wn (5) - cp (s>, t2-+a7 (3.7) 

i @,,(5)K(~)~E=v&) (I z I B 1) 
--1 

*) Such expansions are obtained for Fjl (t) in all mixed problems for domains such as 
an infinite circular tube, strip, wedge, etc. 
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where the asymptotic solution, for small h , of the integral equation (3.7) can be construc- 
ted roughly in the same manner as has been described in [4], Sect. 4. 

Indeed, let us represent (3.7) as a system of three integral equations 

which are equivalent to (3. ‘7) under the condition 

The function &?n (x) is continued with the conservation of sufficient smoothness into 

the intervals ---<xc - 1, 1 (x ( oo. Moreover, if 

it is necessary that 
K (1) ~rv dwtif, Pl-+cQ 

w 

s e-““~“~f(x)dx< 1x1, x*<x 
--co 

The solution of the integral equation (3.10) is easily found by 
tion theorem for Fourier transforms. By a change of variable the 
are reduced to the fofiowing: 

-A)dz==ng,(ht--l)+ 

(3,12) 

(3.13) 

applying the convolu- 
integral equations(3.9) 

ft is natural to solve the system of integrai equations (3.14) for small h by successive 
approximations according to the scheme 

Y mm -+%I, Y hvm + %nr m-G-03 
00 00 

s UV;,*(2)K(r- t)dr == rtg,(ht - I), 
s 
'P,,,(z)K(t -7)dz =ng,(.i - nq 

0 0 
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co 

s (cont. ) 

~lmn (z) K (z -t)dz=ng,(ht- 
0 

I)+ 5 [YPan,m-l(z)--UR(l-h~)l x 
S/A 

x K(2/1-s---_)dz (3.15) 
M 

s yp,,m (d K (t 4)dz=ng,(l- q + y WI?%, fn-l(q- %(hT - !)I x 

0 2/h 

x K(z+t--22/h)dz 

At each step it is hence necessary to find the solution of Wiener-Hopf integral equa- 
tions with the same kernels but with different right-hand sides. 

In order to obtain solutions of the mentioned Wiener-Hopf integral equations which 
can be practically applied, the Koiter method of approximate factorization [6] must be 

utilized. It is generally possible to approximate a kernel K (t) of the form (3.6) such 
that all its fundamental properties are conserved, and the final solution is expressed in 

terms of tabulated functions. 
Let us demonstrate this by the example of impressing a stamp in an elastic layer of 

thickness h clamped rigidly to a base in the presence of complete adhesion along the 

contact line - a < 5 < a, h = h/a, E = (i- 20) 12 (1 - a)1 -’ where (T is the 
Poisson’s ratio. 

For this problem p] 

Kjj (t) = r+ COS Ut dU, (j= i, z) (3.16) 
0 0 

Ljj (U) = 
2x sh 2u + 4 (-l)j u 

L,s (u) = 
2x(ch2u-l)-8((x-l)-ruz 

2xch2u+x2+1 f4u”’ 2xch2u+~~+1+4~2 

We then have 
(X =3-45) 

L(u) = -&I (u) + AL,, (u) (3.17) 

It is easily established on the basis of (3.16) that 

u-1 L (u) N M-’ (1 + 8 %s u), u++ co - 

u-1 L (24) --A0 +A,% U-+ 0 

A, = 2E (1 -&), A, = 2E (1 - E) - (1 - &)2 

Let us now find the solution of the Wiener-Hopf integral equation 
c.; 

(3.18) 

5 $ (z) JC (d - t) dz = np @), Oft<- (3.19) 

CI 
with the kernel (3.17). In order to do the approximate factorization. we first approxi- 
mate the function L (u) u-1 by the expression 
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We select the constants B, D, I? and p in (3.20) so that the behavior of the apprp- 
ximating function U -lL* ( U) would agree with the behavior of the function u-l L (u) 
defined by (3.18). at zero and infinity. After simple computations we find 

Furthermore, let us examine the case p (t) s p = const. Solving the integral equa- 

tion (3.19) with kernel (3.17). (3.20) by a known scheme [6], we obtain 

II, P) = 
pE@ 

fjg’/*-iS r (l/z + qj) E 
,-Dt 

t’lri8 
+ EIT-“‘-ie y(‘ja + ip, Dt) 1 (3.22) 

Here y (a, 5) is the incomplete Gamma function 
z 

r (a. 5) = i tap1 emt dt 

for which there is a table in [7]. 

let us note that the integral equation (3.19) corresponds to equations (3.15) for 
Yy,,, (a). Taking this into account, substituting the expressions t = (1 + 5) hwL and 
b = ~1 into (3.22), we see that the approximate solution obtained for (3.19) possesses 

a singularity of the form (1 + X) -‘h-P at the point z = -1 . This corresponds com- 
pletely to the facts established in the first two sections relative to singulatities of the 

solutions of mixed problems with adhesion. Let us note, finally, that a more exact appro- 
ximation than (3.20) is obtained by multiplying u-IL* (u) by an appropriate rational 
function. 

BIBLIOGRAPHY 

1. Popov, G. Ia., On the solution of the plane contact problem of elasticity theory 

in the presence of adhesion or friction. Izv. Akad. Nauk ArmSSR, Ser. Fiz. - 

matem. Nauk, Vol. 16, No;?, 1963. 
2. Popov. G. Ia., Plane contact problem of the theory of elasticity with bonding 

or frictional forces. PMM Vol.30. No3, 1966. 
3. Gakhov, F. D., Boundary Value Problems. 2nd ed., Moscow, Fizmatgiz, 1963. 

4. Aleksandrov, V. M., Asymptotic methods in contact problems of elasticity 

theory. PMM Vol. 32, Np4, 1968. 
5. Aleksandrov, V. M. and Belokon’, A. V. , Asymptotic solution of a 

class of integral equations and its application to contact problems for 

cylindrical elastic bodies. PMM Vol. 31, p4, 1967. 

6. Noble, B., Application of the Wiener-Hopf Method to Solve Partial Differential 

Equations. (Russian translation). Moscow, IIL. 1962. 

7. Pagurova, V. I., Tables of the Incomplete Gamma Function. Moscow, Akad. 

Nauk SSSR, Computation Center, 1963. 

Translated by M. D. F, 


